proposal_layer层是利用训练好的rpn网络来生成region proposal供fast rcnn使用。
proposal_layer整个处理过程:1.生成所有的anchor,对anchor进行4个坐标变换生成新的坐标变成proposals(按照老方法先在最后一层feature map的每个像素点上滑动生成所有的anchor,然后将所有的anchor坐标乘以16,即映射到原图就得到所有的region proposal,接着再用boundingbox regression对每个region proposal进行坐标变换生成更优的region proposal坐标,也是最终的region proposal坐标) 2.处理掉所有坐标超过了图像边界的proposal 3.处理掉所有长度宽度小于min_size的proposal 4.把所有的proposal按score高低进行排序 5.选择得分前pre_nms_topN的proposal,这是在进行nms前进行一次选择 6.进行nms处理 7.选择得分前post_nms_topN的proposal,这是在进行nms后进行的一次选择 最终就得到了需要传入fast rcnn网络的region proposal。
# --------------------------------------------------------# Faster R-CNN# Copyright (c) 2015 Microsoft# Licensed under The MIT License [see LICENSE for details]# Written by Ross Girshick and Sean Bell# --------------------------------------------------------import caffeimport numpy as npimport yamlfrom fast_rcnn.config import cfgfrom generate_anchors import generate_anchorsfrom fast_rcnn.bbox_transform import bbox_transform_inv, clip_boxesfrom fast_rcnn.nms_wrapper import nmsDEBUG = Falseclass ProposalLayer(caffe.Layer): """ Outputs object detection proposals by applying estimated bounding-box transformations to a set of regular boxes (called "anchors"). """ def setup(self, bottom, top): # parse the layer parameter string, which must be valid YAML layer_params = yaml.load(self.param_str_) self._feat_stride = layer_params['feat_stride'] anchor_scales = layer_params.get('scales', (8, 16, 32)) self._anchors = generate_anchors(scales=np.array(anchor_scales)) self._num_anchors = self._anchors.shape[0] if DEBUG: print 'feat_stride: {}'.format(self._feat_stride) print 'anchors:' print self._anchors # rois blob: holds R regions of interest, each is a 5-tuple # (n, x1, y1, x2, y2) specifying an image batch index n and a # rectangle (x1, y1, x2, y2) top[0].reshape(1, 5) # scores blob: holds scores for R regions of interest if len(top) > 1: top[1].reshape(1, 1, 1, 1) def forward(self, bottom, top): # Algorithm: # # for each (H, W) location i # generate A anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the A anchors # clip predicted boxes to image # remove predicted boxes with either height or width < threshold # sort all (proposal, score) pairs by score from highest to lowest # take top pre_nms_topN proposals before NMS # apply NMS with threshold 0.7 to remaining proposals # take after_nms_topN proposals after NMS # return the top proposals (-> RoIs top, scores top) assert bottom[0].data.shape[0] == 1, \ 'Only single item batches are supported' cfg_key = str(self.phase) # either 'TRAIN' or 'TEST' pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N #这是在进行nms处理前,从anchor中筛选出前topn个 post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N #这是经过nms处理后,从anchor中筛选出钱topn个 nms_thresh = cfg[cfg_key].RPN_NMS_THRESH min_size = cfg[cfg_key].RPN_MIN_SIZE # the first set of _num_anchors channels are bg probs # the second set are the fg probs, which we want scores = bottom[0].data[:, self._num_anchors:, :, :] bbox_deltas = bottom[1].data #和anchor_target_layer层一样,获得训练得到4个变化值 im_info = bottom[2].data[0, :] if DEBUG: print 'im_size: ({}, {})'.format(im_info[0], im_info[1]) print 'scale: {}'.format(im_info[2]) # 1. Generate proposals from bbox deltas and shifted anchors height, width = scores.shape[-2:] #这里和anchor_target_layer层一样,都是通过rpn_cls_score得到最后一层特征提取层的长度和宽度if DEBUG: print 'score map size: {}'.format(scores.shape) # Enumerate all shifts shift_x = np.arange(0, width) * self._feat_stride shift_y = np.arange(0, height) * self._feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # Enumerate all shifted anchors: # # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = self._num_anchors K = shifts.shape[0] anchors = self._anchors.reshape((1, A, 4)) + \ shifts.reshape((1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)) #和anchor_target_layer层一样,得到所有的anchor坐标值,并且形状是4列多行 # Transpose and reshape predicted bbox transformations to get them # into the same order as the anchors: # # bbox deltas will be (1, 4 * A, H, W) format # transpose to (1, H, W, 4 * A) # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a) # in slowest to fastest order bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4)) #将bbox_deltas的shape改成和anchors一样,方便下面运算 # Same story for the scores: # # scores are (1, A, H, W) format # transpose to (1, H, W, A) # reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a) scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1)) #将scores的shape也变成4列多行 # Convert anchors into proposals via bbox transformations proposals = bbox_transform_inv(anchors, bbox_deltas) #通过bbox_deltas将anchors转成proposals, # 2. clip predicted boxes to image proposals = clip_boxes(proposals, im_info[:2]) # 3. remove predicted boxes with either height or width < threshold # (NOTE: convert min_size to input image scale stored in im_info[2]) keep = _filter_boxes(proposals, min_size * im_info[2]) proposals = proposals[keep, :] scores = scores[keep] # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take top pre_nms_topN (e.g. 6000) order = scores.ravel().argsort()[::-1] if pre_nms_topN > 0: order = order[:pre_nms_topN] proposals = proposals[order, :] scores = scores[order] # 6. apply nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) keep = nms(np.hstack((proposals, scores)), nms_thresh) if post_nms_topN > 0: keep = keep[:post_nms_topN] proposals = proposals[keep, :] scores = scores[keep] # Output rois blob # Our RPN implementation only supports a single input image, so all # batch inds are 0 batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32) blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False))) top[0].reshape(*(blob.shape)) top[0].data[...] = blob # [Optional] output scores blob if len(top) > 1: top[1].reshape(*(scores.shape)) top[1].data[...] = scores def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" passdef _filter_boxes(boxes, min_size): """Remove all boxes with any side smaller than min_size.""" ws = boxes[:, 2] - boxes[:, 0] + 1 hs = boxes[:, 3] - boxes[:, 1] + 1 keep = np.where((ws >= min_size) & (hs >= min_size))[0] return keep
这是这一层的prototxt
layer { name: 'proposal' type: 'Python' bottom: 'rpn_cls_prob_reshape' bottom: 'rpn_bbox_pred' bottom: 'im_info' top: 'rois' top: 'scores' python_param { module: 'rpn.proposal_layer' layer: 'ProposalLayer' param_str: "'feat_stride': 16" }}
可以看到,bottom[1]就是rpn_bbox_pred
所以上面代码中的bbox_deltas = bottom[1].data就是训练得到的坐标的4个变化值。因为训练rpn网络,本身训练的就是这4个变化值,而不是直接的4个坐标值。
# bbox deltas will be (1, 4 * A, H, W) format # transpose to (1, H, W, 4 * A) # reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a) # in slowest to fastest order bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))
代码中的这一部分必须理解一下。实际上,bbox deltas,也就是要学习的那4个变换值。首先必须知道的是,这4个变换值是训练学习来的,是由卷积训练来的,来自于rpn_bbox_pred这一层,他是一个feature map, shape是(4×anchor个数,h,w)。如何将这个feature map和生成的anchor进行变换,首先必须shape一样才能加或者其他运算。所以,这里所做的就是将bbox deltas的shape变成了和anchors一样的4列多行,4列就代表着x,y,w,h。
注意:无论是anchors还是bbox deltas,还是scores,他们的shape都是多行4列,排列的顺序都是(h,w,a),即第一行是h,w,a,第二行是h+1,w,a,当h排完了,再排w的变换,最后才是a